The Minisci Reaction

Radical Additions to Electron-Deficient Heterocycles

Jake Ganley Department of Chemistry Princeton University

Literature Group Meeting August 27, 2021

Reviews Covering the Minisci Reaction

Minisci, F.; Fontana, F.; Vismara, E. J. Substitutions by Nucleophilic Free Radicals: A New General Reaction of Heteroaromatic Bases. *J. Heterocyclic Chem.* **1990**, *27*, 79-96.

• Original conception and early developments

Duncton, M. A. J. Minisci reactions: Versatile CH-functionalizations for medicinal chemists. *Med. Chem. Commun.* **2011**, *2*, 1135-1161.

• Synthesis and functionalization of complex molecules

Tauber, J.; Imbri, D.; Opatz, T. Radical Addition to Iminium Ions and Cationic Heterocycles. *Molecules* **2014**, *19*, 16190-16222.

• Theoretical background & FMO analysis

Proctor, R. S. J.; Phipps, R. J. Recent Advances in Minisci-Type Reactions. *Angew. Chem. Int. Ed.* **2019**, *58*, 13666-13699.

• Modes of radical generation and control of stereochemistry

Sun, A.; McAtee, R.; McClain, E. J.; Stephenson, C. R. J. Advancements in Visible-Light-Enabled Radical C(sp)2–H Alkylation of (Hetero)arenes. *Synthesis* **2019**, *51*, 1063-1072.

• Photochemical modes of radical generation

Chemical Science

EDGE ARTICLE

Metal- and Acid-F

Using Trioxane as

Soluble Oxidant

Letter

The Acid-Free Cyclopropanol-Minisci Reaction Reveals the Catalytic Role of Silver–Pyridine Complexes

Andrei Nikolaev,[§] Claude Y. Legault,^{†®} Minhao Zhang,[§] and Arturo Orellana^{*,§®}

[§]Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada [†]Department of Chemistry, University of Sherbrooke, 2500 Boulevard de l'Universite, Sherbrooke, Québec J1K 2R1, Canada

Supporting Information

ABSTRACT: A well-defined homogeneous silver precatalyst can be utilized for the direct C–H functionalization of a wide range of aromatic nitrogen heterocycles with cyclopropanols under acidfree conditions. This reaction can be conducted on gram-scale and with low catalyst loadings (as low as 1%), which is rare for silver-catalyzed Minisci-type reactions. Moreover, reactivity

trends, as well as steric and calculated electronic properties of the heterocycles, strongly suggest that silver-heterocycle complexes formed in situ behave as redox active catalysts and as Lewis acid activators of the heterocycle and that the electronic nature of the heterocyclic substrates tunes the reactivity of the resulting complexes.

Jacob M. Ganley,^{†,⊥}[®] Melodie Christensen,[§] Yu-hong Lam,^{II}[®] Zhengwei Peng,^{II} Angie R. Angeles,^{*,‡,#} and Charles S. Yeung^{*,†}[®]

Visible-Light-Mediated Direct Decarboxylative Acylation of Electron- sci C–H alkylation of Deficient Heteroarenes Using α -Ketoacids ited alkyl halides using

Sabyasachi Manna and Kandikere Ramaiah Prabhu*®

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India

chen Wang,^a Hongjian Song,^a Yuxiu Liu^a

View Journal | View Issue

The Minisci Reaction

Radical Additions to Electron-Deficient Heterocycles

- 1. Historical context and reaction development
- 2. Mechanistic features governing selectivity
- 3. Recent innovations in the Minisci reaction

Radical Electrophilicity/Nucleophilicity

Arylation of Pyridine

FMO Analysis of Neutral Arenes/Pyridinium

Arylation of Pyridine

— Additions to Pyridiniums — _____

Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc. **1924**, 46, 2339–2343. Abramovitch, R.; Saha, J. J. Chem. Soc. **1964**, 301, 2175–2187. Lynch, B.; Chang, H. Tet. Lett. **1964**, 5, 2965–2968. Dou, B.; Lynch, B. Tet. Lett. **1965**, 6, 897–901.

FMO Analysis of Neutral Arenes/Pyridinium

HF/6-31G* level of theory

Arylation of Pyridine

Gomberg, M.; Bachmann, W. E. J. Am. Chem. Soc. **1924**, *46*, 2339–2343. Abramovitch, R.; Saha, J. J. Chem. Soc. **1964**, *301*, 2175–2187. Lynch, B.; Chang, H. *Tet. Lett.* **1964**, *5*, 2965–2968. Dou, B.; Lynch, B. *Tet. Lett.* **1965**, *6*, 897–901.

Electrophilic Amination of Arenes

Radical Electrophilicity/Nucleophilicity

Investigating the Nucleophilic Behavior of Alkyl Radicals

Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tet. Lett. 1968, 54, 5609–5612.

Advent of "The Minisci Reaction"

Anderson, J.; Kochi, J. J. Am. Chem. Soc. 1970, 92, 1651–1659. Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575–3579.

The Minisci Reaction

Radical Additions to Electron-Deficient Heterocycles

- 1. Historical context and reaction development
- 2. Mechanistic features governing selectivity
- 3. Recent innovations in the Minisci reaction

Regioselectivity in the Additions of Radicals to Pyridinium

Minisci, F.; Vismara, E.; Fontana, F.; Morini, G.; Serravalle, M. J. Org. Chem. 1987, 52, 730–736.

• No isotope effect observed for Ph radical $(k_{-1} << k_2[B] \text{ and } k_{-3} << k_4[B])$

• Addition to the pyridinium is largely irreversible, regioselectivity determined by k_1 vs k_3

• No desired product observed for benzyl radical in any solvent

• Low enthalpy of addition renders $k_{-1} >> k_2[B]$ and $k_{-3} >> k_4[B]$, allowing for irreversible dimerization

• Isotope effect and regioselectvity are both significantly affected by reaction medium

- Solvent and base catalysis mainly influence the *reversibility of the radical addition*
- Poorly solvated radical ion pair in benzene undergoes α -deprotonation faster than in water

- Increasing the temperature of the reaction in water increases reversibility of radical addition
 - Increasing the reversibility *increases the amount of the 4-isomer*
 - Similarly, increasing the reaction pH (decreasing base catalysis) favors 4-isomer

Deactivation of Arene by Alkylation

• Introduction of an inductively donating *alkyl group deactivates the ring* towards further alkylation

• The degree of activation increases with the *nucleophilic character* of the attacking radical

Nucleophilicity of Alkyl Radicals

• Hyperconjugation with adjacent σ (C-H)-orbitals raises the SOMO energy

- Nucleophilicity of radicals trends primary < secondary < tertiary
- Similarly, hyperconjugation with *heteroatom lone pairs* also raises the SOMO energy

Circumventing Overalkylation with Biphasic Reaction Conditions

• Introduction of an alkyl group *increases the lipophilicity* of the product

• Extraction into the organic solvent *inhibits further alkylation*

• Addition of acid & switch of solvent reduces influence of "conjugate reactivity"

Predicting and Tuning Regioselectivity

O'Hara, F.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2013, 135, 12122–12134.

The Minisci Reaction

Radical Additions to Electron-Deficient Heterocycles

- 1. Historical context and reaction development
- 2. Mechanistic features governing selectivity
- 3. Recent innovations in the Minisci reaction

Dehydrogenative Coupling with H₂ Release

Decarboxylative Radical Generation ——

• Net oxidative reaction with no chemical oxidant, solely driven by light and the release of H₂

Tian, W.-F.; Hu, C.-H.; He, K.-H.; He, X.-Y.; Li, Y. Org. Lett. 2019, 21, 6930–6935. Huang, C.-Y.; Li, J.; Li, C.-J. Nat. Comm. 2021, 12, 1–9.

Nucleophilicity of Boryl Radicals

Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D. Nature 2021, 595, 677–683.

Minisci-Type Borylation of Nitrogen Heterocycles

Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D. Nature 2021, 595, 677–683.

Enantioselective Minisci Reaction

Proctor, R. S. J.; Davis, H. J.; Phipps, R. Science **2018**, 360, 419–422. Zheng, D.; Studer, A. *Angew. Chem. Int. Ed.* **2019**, 58, 15803–15807. Proctor, R. S. J.; Chuentragool, P.; Colgan, A. C.; Phipps, R. *J. Am. Chem. Soc.* **2021**, 143, 4928–4934.

Multivariate Linear Regression Analysis

Reid, J. P.; Proctor, R. S. J.; Sigman, M. S.; Phipps, R. J. J. Am. Chem. Soc. 2019, 141, 19178–19185.

Additional Mechanistic Experiments

• Consistent with Minisci's measured KIE of α-THF radical and reversibility dependence on radical stability

• Suggests a Curtin-Hammett situation- radical addition is reversible and deprotonation is selectivity determining

• Suggests the free N–H bond participates with the phosphate during enantiodetermining deprotonation

Summarized Computational Study

Proposed Reaction Mechanism

Asymmetric Minisci Reaction with Isoquinolines

Zhiyong Jiang, 2018 ——

15 mol% SPINOL Phosphoric Acid DME, –10 °C, blue LEDs

1 mol% DPZ

93% yield, 93% ee

— Differentiating Features —

- Organic vs Ir photocatalyst
- Carbamate PG (deprotonation step?)
- Complementary (if narrow) scope of arene
- Completely different binding pocket

Conclusions

1) We stand on the *shoulders of giants* who explored much of the fundamental radical reactivity that we use today

Fine Chemicals from Lignosulfonates. 1. Synthesis of Vanillin by Oxidation of Lignosulfonates

Hans-René Bjørsvik* Borregaard Synthesis, P.O. Box 162, N-1701 Sarpsborg, Norway

Francesco Minisci Dipartimento di Chimica del Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy

Conclusions

2) The Minisci reaction is a powerful method for *assembling desirable molecules* (sp²-sp³ bonds, basic heterocycles)

Photoredox Minisci Reaction Using Large-Scale Photoflow Equipment

Scheme 11 Synthesis of TPA023, an $\alpha 2/\alpha 3$ selective GABA_A agonist.⁴⁰

Conclusions

3) Interfacing with *modern catalysis* (Photoredox, CPA, Co H₂ evolution, electrocatalysis) has led to new innovations

4) Photoredox catalysis has drastically diversified the classes of substrates that can be used as radical precursors

5) The Minisci reaction *deserves to be respected* as more than just an afterthought in a photoredox paper!

— Future Directions —

• Catalytic control over regioselectivity & enantioselectivity (atroposelective?)

- Further improving reactivity of heterocycles (beyond quinoline, isoquinoline, and pyridine)
- Complementary reactivity and selectivity with other catalysts (Lewis Acids? Frustrated Lewis Pairs?)
 - Catalytic, out-of-equilibrium deracemization enabled by Proton-Coupled Electron Transfer™