Oxidative addition of transition metal centers to unactivated C–N single bonds

Historical context, strategies, and applications

Eric Geunes
Department of Chemistry, Princeton University
Knowles Lab
Group Meeting
September 24th, 2021
Select reviews on transition metal-catalyzed C–N bond cleavage

 TM-catalyzed C–N bond cleavage via all mechanisms (including OA); organized by functional group

 TM-catalyzed C–N bond cleavage via all mechanisms (including OA); organized by hybridization of C atom

 Recent advances in OA to C–N bonds; organized by mode of activation

 Activation of C–N and C–O bonds via non-precious metal catalysis (predominantly [Ni]- and [Fe]-cat.)
Oxidative addition of transition metal centers to unactivated C–N single bonds

Historical context, strategies, and applications

Outline

1. Introduction
 - Overview of C–N bonds and oxidative addition

2. Pioneering work, key mechanistic investigations
 - Allylamine electrophiles, activation via protonation, and isolated organometallics

3. Strategies and applications in synthetic method development
 - Recent advances: Lewis acid activation, H-bond activation, directed OA, and undirected addition to neutral bonds
C–N bonds and their role in organic synthesis

- C–N bonds are ubiquitous in biology: comprise the linkages of proteins, DNA
- Of small molecule pharmaceuticals up to 2012, 84% contained ≥ 1 N atom
- Extensive research has been done on the formation of C–N bonds; amide coupling one of the most widely-used reactions in medicinal chemistry
- Buchwald-Hartwig reaction possibly the most well-known transition-metal catalyzed method to form C–N bonds:

![Chemical reaction diagram]

Key bond-forming step:

What about the microscopic reverse: oxidative addition to C–N bonds?

First: an overview on oxidative addition

- Often one of the first steps in transition metal-catalyzed cross-couplings:

\[
\begin{align*}
R^X + M^n & \rightarrow OA \rightarrow R^\cdot M^{n+2} X \quad \text{or} \quad [R^\cdot M^{n+2}]^\oplus X^- \\
\end{align*}
\]

Factors that favor OA
- Electron-rich metal center
- Open coord sites/minimal steric
- Properties of electrophile
- Relative bond strengths of SM + pdts

Mechanisms of OA
- S_N2
- Radical/ET-based
- 3-center concerted

- Electrophiles commonly have *good leaving groups*:

R\(_{\text{Cl}}\) \quad R\(_{\text{Br}}\) \quad R\(_{\text{I}}\) \quad R\(_{\text{OTf}}\) \quad R\(_{\text{OTs}}\) \quad R\(_{\text{OAc}}\)

So, why study OA to C–N bonds?

- Compounds containing C–N bonds are cheap and accessible; could serve as useful synthons
- Unique outcome of oxidative addition to a C–N single bond: 2 reactive species formed

![Chemical structure](image)

Challenges & considerations

- Electrophile coupling partner has a poor LG
- Metal amides are: strongly basic, have ionic character, and reactive towards β-hydride elimination
- C–N bonds have moderate to high BDEs (see below)

<table>
<thead>
<tr>
<th>Compound</th>
<th>BDE (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtNMe₂</td>
<td>72.3</td>
</tr>
<tr>
<td>EtNHMe</td>
<td>79.8</td>
</tr>
<tr>
<td>EtNH₂</td>
<td>84.8</td>
</tr>
<tr>
<td>AcNH₂</td>
<td>99.7</td>
</tr>
<tr>
<td>PhNH₂</td>
<td>103.2</td>
</tr>
<tr>
<td>NCNH₂</td>
<td>118.8</td>
</tr>
</tbody>
</table>

Oxidative addition of transition metal centers to unactivated C–N single bonds

Historical context, strategies, and applications

Outline

1. Introduction
 - Overview of C–N bonds and oxidative addition

2. Pioneering work, key mechanistic investigations
 - Allylamine electrophiles, activation via protonation, and isolated organometallics

3. Strategies and applications in synthetic method development
 - Recent advances: Lewis acid activation, H-bond activation, directed OA, and undirected addition to neutral bonds
The first hint of OA to an unactivated C–N single bond

- Early evidence came a few years after Tsuji's initial report of Pd-mediated allylation:

Tsuji, 1965:

\[
\begin{align*}
\text{PdCl} & + \text{MeO} \text{O} \text{O} \text{Me} \\
\text{Na} / & \text{MeO} \text{O} \text{O} \text{Me} \\
\text{DMSO/EtOH, rt} & \rightarrow \text{MeO} \text{O} \text{O} \text{Me} + \text{MeO} \text{O} \text{O} \text{Me}
\end{align*}
\]

Atkins, Walker, Manyik, 1970:

\[
\begin{align*}
\text{EtN} & + \text{MeO} \text{O} \text{O} \text{Me} \\
0.5 \text{ mol } \% \text{ Pd(acac)}_2 \text{ and } 1.5 \text{ mol } \% \text{ PPh}_3 & \text{at } 85^\circ \text{C} \\
\rightarrow & \text{70%} \text{ MeO} \text{O} \text{O} \text{Me} + \text{30%} \text{ MeO} \text{O} \text{O} \text{Me}
\end{align*}
\]

Studies late in the decade showed a common theme: acetic acid!

Akiyama, Teranishi, 1977:

\[
\text{NH}_2 + \begin{array}{c}
\text{X} \\
\text{C}_6\text{H}_4
\end{array} \xrightarrow{1 \text{ eq Pd(OAc)}_2, 6:1 \text{ dioxane/AcOH, reflux}} \begin{array}{c}
\text{X} \\
\text{C}_6\text{H}_4=\text{C}_6\text{H}_4
\end{array} + \text{NH}_3
\]

11-40% yield

\(X = \text{H, Me, OMe, Cl, NO}_2\)

Trost, Keinan, 1980:

\[
\text{MeNaNH}_{\text{PMP}} + \begin{array}{c}
\text{NH}_2 \\
\text{C}_6\text{H}_4
\end{array} \xrightarrow{1 \text{ eq Pd(PPh}_3)_4, \text{THF, AcOH}} \begin{array}{c}
\text{Me} \\
\text{C}_6\text{H}_4=\text{C}_6\text{H}_4=\text{N}
\end{array}
\]

The stage was set: Brønsted acid-assisted OA to C–N bonds

A cascade of studies followed, following similar mechanisms of C–N bond activation:

\[
\begin{align*}
\text{R}^+\text{NR}_2 & \xrightarrow{\text{H}^+} \text{R}^-\text{NHR}_2 \\
\text{R}^-\text{NHR}_2 & \xrightarrow{[\text{M}^n]} \text{R}^-\text{MN}^{n+2}\text{NHR}_2 \\
\text{R}^-\text{MN}^{n+2}\text{NHR}_2 & \rightarrow \text{p} \text{d} \text{ts}
\end{align*}
\]

great electrophile!

Murahashi, 1985:

5 mol% Pd(PPh\textsubscript{3})\textsubscript{4} \\
2.5 mol% TFA \\
PhH, 50°C

\[
\begin{align*}
\text{PT} & \rightarrow \text{Me}^+\text{N}^{-} \xrightarrow{\text{OA}} \text{Pd}^{\text{II}}_{\text{II}} \xrightarrow{\text{RE}} \text{Me}^+\text{N}^{-} \\
\text{PT} & \rightarrow \text{Me}^+\text{N}^{-} \xrightarrow{\text{OA}} \text{Pd}^{\text{II}}_{\text{II}} \xrightarrow{\text{RE}} \text{Me}^+\text{N}^{-}
\end{align*}
\]

Tet. Lett. 1985, 26, 5563-5566
As TM-catalyzed C–N bond cleavage expanded, the mechanism of activation became clearer

- Various organometallic complexes were isolated over the following decades:

Balch, 1983

Arnold, 1994

Ta(OSi(tBu)₃)₃ \[\xrightarrow{\text{M}_3(\text{CO})_{12}} \] \[\xrightarrow{\text{THF, reflux}} \] \[\xrightarrow{1\% \text{Na/Hg}} \]

Balch, 1983

Arnold, 1994

Hartwig, 2002

Ta(III) OA to anilines: electronic factors govern selectivity

- C–N cleavage: R = CF₃, F, Ph; \(\rho = +2.1 \) (\(R = 0.84 \))
- N–H cleavage: R = H, Me, OMe, NMe₂; \(\rho = -0.69 \) (\(R = 0.93 \))

Proposed mechanism:

JACS 1996, 118, 5132-5133
Ni(0) OA to allylamines: a surprisingly favorable elementary step

- Realized during Hartwig’s mechanistic studies of a hydroamination protocol

\[\text{N} + \text{HR} \rightarrow \text{C} = \text{N} \text{O} \]

- Allylamine products found to exchange with other amines under reaction conditions

- Poor yields in nucleophilic attack of isolated allyl complex with amine led to investigation of microscopic reverse

- Stoichiometric reactions allowed isolation of C–N OA products:

\[\text{(DPPF)Ni(COD)} \rightarrow \text{Ni}^{II}(\text{DPPF}) \ + \ \text{free amine} \]

- Racemization of enantioenriched allylic amines occurred under the reaction conditions with chiral ligand

JACS 2002, 124, 3669-3679
Oxidative addition of transition metal centers to unactivated C–N single bonds

Historical context, strategies, and applications

Outline

1. Introduction
 - Overview of C–N bonds and oxidative addition

2. Pioneering work, key mechanistic investigations
 - Allylamine electrophiles, activation via protonation, and isolated organometallics

3. Strategies and applications in synthetic method development
 - Recent advances: Lewis acid activation, H-bond activation, directed OA, and undirected addition to neutral bonds
Brønsted acid-assisted OA laid the groundwork for other modes of C–N activation.
Lewis acid-assisted C–N oxidative addition

Trost, 1995:

\[
\text{N} \quad \text{Me} \\
\text{Me} \quad \text{N} \\
\text{R} \quad \text{B(OH)}_2
\]

\[
\text{R} = \text{aryl, alkenyl}
\]

\[
10 \text{ mol}\% \text{ Ni(COD)}_2 \\
20-40 \text{ mol}\% \text{ BINAPO} \\
10 \text{ mol}\% \text{ KOH} \\
\text{PhH, reflux}
\]

- Evidence for LA activation: reactivity observed in the presence of a Brønsted base, methylation occurred via methylboronic ester, and allyl pyrrolidines were more efficient than diethyl allylamines

Nakao, 2014:

\[
\text{PG} \quad \text{N} \quad \text{CN} \\
\text{R}
\]

\[
10 \text{ mol}\% \text{ CpPd(allyl)} \\
10 \text{ mol}\% \text{ Xantphos} \\
40 \text{ mol}\% \text{ BEt}_3 \text{ or BPh}_3 \\
\text{PhMe, 80°C}
\]

\[
\text{Ac} \quad \text{PPh}_3 \\
\text{Ph} \\
\text{PPh}_3
\]

\[
\text{N} \quad \text{Pd}^{II} \quad \text{C≡N} \quad \text{BPh}_3
\]

\[
\text{isolated!}
\]

Hydrogen bond-assisted C–N OA

Zhang, 2011:

\[
\text{allyl} + \text{ketone} \xrightarrow{10 \text{ mol\% } [\text{PdCl(allyl)}]_2, 6 \text{ mol\% DPPF, 1 equiv pyrrolidine}} \text{adduct}
\]

MeOH, rt

Directed C–N OA

Kakiuchi, 2007:

\[
\text{substrate} + \text{alkynylborane} \xrightarrow{4 \text{ mol\% } \text{RuH}_2(\text{CO})(\text{PPh}_3)_3} \text{product}
\]

PhMe, reflux

R = H, alkyl, allyl \hspace{1cm} R_1 = \text{alkyl, alkenyl, aryl}

JACS 2011, 133, 19354-19357; JACS 2007, 129, 6098-6099
The home run: undirected OA to neutral C–N bonds

First realized in a carbonylative synthesis of amides from allyl amines:

\[
\begin{align*}
\text{Murahashi, 1994:} & \\
R\text{[N]} & \xrightarrow{5 \text{ mol\% Pd(OAc)}_2, 10 \text{ mol\% DPPF}} \xrightarrow{50 \text{ atm CO, PhMe, 110°C}} \text{[N]}\text{O} \\
\text{[N]} &= \text{NET}_2, \text{NMePh, NBu}_2, \text{NMeBn, piperidine}
\end{align*}
\]

Addition of catalytic TFA resulted in lower yields

\[
\begin{align*}
\text{OA} & \xrightarrow{\text{Pd}^{II} \text{N}} \xrightarrow{\text{Pd}^{II} \text{O}} \xrightarrow{\text{M}} \text{RE}
\end{align*}
\]

\textit{Tetrahedron 1994, 50, 453-464}
OA to C–N bonds with partial double bond character even more challenging

- Early success found in decarbonylative phthalimide cleavage:

Matsubara, Kurahashi, 2008:

\[
\begin{align*}
\text{Ar} = \text{electron-deficient} & \quad \text{R} = \text{aryl, alkyl} \\
\end{align*}
\]

- Nickel catalysis also proved effective for amide C–N bond cleavage:

Garg, Houk, 2015:

\[
\begin{align*}
\text{R}_1 = \text{Ph, Ts, Boc} & \quad \text{R}_3 = \text{alkyl} \\
\text{R}_2 = \text{H, Me} & \\
\end{align*}
\]
Extensive computational studies elucidated constraints of the system

Methodology further expanded to: hydrolysis, transamidation, Suzuki XC, Negishi XC, Heck reaction

More electron-rich ligands found to promote OA to alkylamides

An alternative strategy to amide C–N bond cleavage: twisted amides

Nature 2015, 524, 79-83; ACS Catal. 2020, 10, 12109-12126
To date, very few methods exist which involve undirected OA to neutral arylamines

- Shi’s recent report the first to exploit undirected OA to dialkyl arylamines:

\[
\text{R = alkyl} \quad \text{IMes}^\text{Me}^+ \quad \text{NiBr}_2^{2-} \quad \text{IMes}^\text{Me}^\text{Me}\quad \text{THF, 135°C}
\]

- Mg found to be crucial to reactivity; however, MgBr\(_2\) not
- EPR spectroscopy showed evidence of a \textit{Ni(I)/Ni(III) catalytic cycle}:

- Role of Mg in catalytic cycle remains elusive

\textit{JACS 2018, 140, 13575-13579}
Conclusions and outlook

- At its best, C–N bond OA can achieve unique transformations in synthetic chemistry
- However, we are still figuring out how to selectively and efficiently achieve undirected OA to neutral C–N bonds
 - In-depth mechanistic studies are few and far between
- Generally, atom economy is poor, and utility of methods is an issue
 - The majority of methods reported to date lose stoichiometric amine
 - C–N OA has most frequently been applied to known cross-coupling methods; entirely novel reactions are few and far between
 - The few reactions that allow retention of both components of the electrophile are usually intramolecular

A significant question remains: how do we capture the reactive amide before it is lost as a byproduct?