Fundamentals and Applications of Chromatography

James Cox

Knowles Lab Literature Group Meeting September 23, 2022

What exactly is chromatography?

Definition

"technique for **separating the components of a mixture** on the basis of the relative amounts of each solute distributed between a **moving fluid stream** and a **contiguous stationary phase**"

—Encyclopedia Britannica

• All separations involve the movement of a compound between two different phases

distillation liquid \leftrightarrow gas

recrystallization solution ↔ solid

sublimation solid ↔ gas

• The **flowing** of one phase relative to the other is the defining feature of chromatographic separations

Overview

Fundamentals and Theory of Chromatography

- Parameters affecting separation quality
 - The Resolution equation
 - The van Deemter equation

Three Common Types of Chromatography

- Gas chromatography
- High-performance liquid chromatography
 - Gel-permeation chromatography

Current Trends in Chromatography Research

The Key Components of Chromatographic Separation

The Key Components of Chromatographic Separation

Quality of Separation is Measured by Resolution

- What are we looking for in an ideal chromatographic separation?
 - Every component of our mixture to elute separately
 - Bands of compounds to be narrow and concentrated
 - Separation to use a minimum of time and solvent
- We use resolution between chromatogram peaks as a measure of the quality of the separation

$$R_s = \frac{difference \ in \ ret. \ time}{average \ peak \ width} = \frac{2\Delta t_R}{(w_1 + w_2)}$$

- resolution improves with larger retention time difference and narrower peaks
- use tangent lines at peak's inflection points to define width

Quality of Separation is Measured by Resolution

- What are we looking for in an ideal chromatographic separation?
 - Every component of our mixture to elute separately
 - Bands of compounds to be narrow and concentrated
 - Separation to use a minimum of time and solvent
- We use resolution between chromatogram peaks as a measure of the quality of the separation

Many Factors Affect Resolution

• The main considerations for resolution are retention, selectivity, and efficiency

$$R_s = \frac{k}{k+1} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

The Fundamental Resolution Equation

Retention term: describes the retention of a compound relative to an unretained compound k is the retention factor

Selectivity term: describes ratio of retention factors for adjacent peaks α is the selectivity factor

Efficiency term: describes rate of band broadening during separation N is the number of theoretical plates

Retention is Necessary for Separation

$$R_{s} = \frac{\mathbf{k}}{\mathbf{k} + \mathbf{1}} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

Retention term: describes the retention of a compound relative to an unretained compound

Retention is Necessary for Separation

$$R_{s} = \frac{\mathbf{k}}{\mathbf{k} + \mathbf{1}} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

Retention term: describes the retention of a compound relative to an unretained compound

$$k = retention factor = \frac{t_R - t_0}{t_0}$$

- Essentially gives number of column volumes to elute given compound
 - 2 < k < 3 is ideal
- k > 10 indicates overly strong retention (wastes time and causes band broadening)

Retention is Necessary for Separation

$$R_{S} = \frac{\mathbf{k}}{\mathbf{k} + \mathbf{1}} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

Retention term: describes the retention of a compound relative to an unretained compound

 $k = retention \ factor = \frac{t_R - t_0}{t_0}$

- To modify a compound's *k*:
- change the stationary phase
 - change the mobile phase
- alter the pH of the mobile phase (for ionizable analytes)

Selectivity has the Biggest Effect on Resolution

$$R_{s} = \frac{k}{k+1} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

Selectivity term: α describes ratio of retention factors k for adjacent peaks

$$\alpha = selectivity factor = \frac{k_2}{k_1}$$

- α > 1.1 is considered good
- To modify α between peaks:
 - change the stationary phase
 - change the mobile phase
 - alter the pH of the mobile phase (for ionizable analytes)

Selectivity has the Biggest Effect on Resolution

$$R_{s} = \frac{k}{k+1} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

Selectivity term: α describes ratio of retention factors k for adjacent peaks

$$\alpha = selectivity \ factor = \frac{k_2}{k_1}$$

 Changing selectivity gives the most resolution improvement

• This is why the identity of the stationary and mobile phases is so important

Efficiency Measures Rate of Band Broadening

$$R_{s} = \frac{k}{k+1} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

Efficiency term: highest for bands that stay narrow and symmetric even at long retention times

$$N = theoretical\ plates = 16 \left(\frac{t_{R,1}}{w_1}\right)^2$$

• Bands naturally widen as solutes take various paths through stationary phase

Best ways to improve column efficiency

• Decrease particle size and increase uniformity

• Increase column length

$$\Delta t_R \propto L$$
 width $^{1/2} \propto L$

van Deemter Equation

$$HETP = A + \frac{B}{u} + C \cdot u$$

Relates separation efficiency to mobile phase flow velocity \boldsymbol{u}

- HETP Height Equivalent to Theoretical Plate: distance corresponding to one theoretical plate
 - A Eddy diffusion: describes channeling through non-ideal packing (i.e., polydisperse mobile phase)
 - B Longitudinal diffusion: describes unavoidable diffusion of compound along length of column
 - C Resistance to mass transfer: inversely proportional to analyte's equilibration rate b/w phases
 - u Flow rate: nothing fancy here u = Length of column / void time

van Deemter Equation Graphically

$$HETP = \mathbf{A} + \frac{B}{u} + C \cdot u$$

- Eddy diffusion term
- Results from analytes taking multiple different paths through column (channeling)
 - Lots of channeling leads to poor separation by way of broad bands
- Minimized by having well-packed columns with small, uniformly shaped stationary phase particles

van Deemter Equation Graphically

$$HETP = A + \frac{B}{u} + C \cdot u$$

• Longitudinal diffusion term

- Arises from thermal diffusion of analyte
 - ullet The longer the analyte spends on column, the greater effect B has
- Not much else can be done to avoid this

van Deemter Equation Graphically

$$HETP = A + \frac{B}{u} + \mathbf{C} \cdot \mathbf{u}$$

• Resistance to mass transfer term

$$A_{(mobile)} \longrightarrow A_{(stat.)}$$

- Want analyte to equilibrate fully between phases
- If flow rate is too high, then equilibrium artificially biased towards A_(mobile)
 - Faster equilibration allows faster flow rate to be used → flatter C section

"The General Elution Problem"

How do we simultaneously achieve both high resolution and reasonable run times?

Overview

Fundamentals and Theory of Chromatography

- Parameters affecting separation quality
 - The Resolution equation
 - The van Deemter equation

Three Common Types of Chromatography

- Gas chromatography
- High-performance liquid chromatography
 - Gel-permeation chromatography

Current Trends in Chromatography Research

Gas Chromatography (GC)

• "Gas" indicates that the mobile phase is a gas

Wall-coated

Packed

Mobile and Stationary Phases for GC

MOBILE PHASE

- \bullet He, H₂, and N₂ are the most common mobile phases
- \bullet Equilibration between phases is slowest in N_2 (heaviest gas), so flow rate needs to be slower than for He or H_2

STATIONARY PHASE

Common Detectors for GC

Mass Spectrometry (GCMS)

- Good for essentially any analyte
- Gives lots of info on complex mixtures
 - Incredibly sensitive detection

Flame Ionization Detector (FID, what our GC has)

- Prized for a low detection limit and a large linear response range (10⁷ orders of magnitude)
- Can detect anything combustible
- Not amenable to preparative GC

High-Performance Liquid Chromatography (HPLC)

"High-pressure LC?" — Nope!

Given other forms of chromatography using pressurized mobile phases,
 "high-performance" is now preferred

• The required operating pressure is a function of numerous parameters

$$P = \frac{\eta L u}{K^o \pi r^2 d^2}$$

- Increasing the solvent viscosity, column length, or flow rate linearly increases pressure
- Column diameter and particle size have big impact
 - Decrease particle diameter by half and pressure increases by 4x

Mobile and Stationary Phases for Chiral HPLC

MOBILE PHASE

• Both normal and reverse phase, but reverse phase is most common

Hexanes/CHCl₃

pridate, but reverse pridate is most commen

Hexanes/EtOAc

AcOH and TEA are common pH modifiers

H₂O/MeCN

H₂O/MeOH

STATIONARY PHASE

• A broad array of chirality sources are used on commercial stationary phases

Cellulose-derivatives

Hexanes/iPrOH

- Often supported in 5 µm silica particles
 - The basis for OD-H columns

- Pirkle-type phases
- π -acid/ π -base binding sites
- Usually have H-bond donor too
- SiO₂ Si NO₂ NO₂

- Ligand-exchange chromatography
- Often used for D- and L- amino acids
 - Mobile phase often contains NH₃

Mobile and Stationary Phases for Chiral HPLC

MOBILE PHASE

- Both normal and reverse phase, but reverse phase is most common
- AcOH and TEA are common pH modifiers

Hexanes/iPrOH

Hexanes/CHCl₃

Hexanes/EtOAc

H₂O/MeCN

H₂O/MeOH

STATIONARY PHASE

• A broad array of chirality sources are used on commercial stationary phases

Inclusion complexes

- Take advantage of differential complexation between analyte isomers and stationary phase
 - Cyclodextrins are the most common, but crown ethers have also been used

Size-Exclusion Chromatography (SEC)

Gel-permeation chromatography is specifically SEC with an organic eluent

- Separation is based on the analyte's hydrodynamic radius
- Hydrodynamic radius includes the solvent shell around analyte
 - Not a problem if analyte is similar to calibration standards

Mobile and Stationary Phases for SEC

MOBILE PHASE

• Both normal and reverse phase are available

• Reverse phase most common for biomolecules

STATIONARY PHASE

- In general, SEC stationary phases try to minimize chemical interactions with analyte so size becomes defining feature
 - Tune size of pores in stationary phase to select for size range of analytes in sample
 - Reverse-phase stationary phases
 - common for biomolecule purifications, especially proteins
 - have lower mechanical strength than silica-based phases, so low flow rates must be used

6%-crosslinked agarose Sepharose 6FF column

Crosslinked agarose

• difunctional electrophiles (e.g., epichlorohydrin) used to crosslink

Mobile and Stationary Phases for SEC

MOBILE PHASE

• Both normal and reverse phase are available

• Reverse phase most common for biomolecules

STATIONARY PHASE

- In general, SEC stationary phases try to minimize chemical interactions with analyte so size becomes defining feature
 - Tune size of pores in stationary phase to select for size range of analytes in sample
 - Normal-phase stationary phases
 - mainly used for synthetic polymer analysis and purification
 - porous crosslinked polymers are the most common stationary phase class

PS-co-PDVB particles

Poly(styrene-co-divinylbenzene)

- relatively unfunctionalized so limits chemical interactions
- produced mainly from emulsion polymerization with polymeric porogens

Overview

Fundamentals and Theory of Chromatography

- Parameters affecting separation quality
 - The Resolution equation
 - The van Deemter equation

Three Common Types of Chromatography

- Gas chromatography
- High-performance liquid chromatography
 - Gel-permeation chromatography

Current Trends in Chromatography Research

Brief History of Chromatography

1941 Archer Martin & Richard Synge invent partition chromatography (hydrated SiO₂ used to separate amino acids)

Waters™

1969 Waters corporation commercializes first HPLC system, the ALC100 HPLC

2004-present Invention of ultra-highpressure LC and further increases in pressure limits

1880-1900

Columns of charcoal or

limestone found to

fractionate crude petroleum

Mikhail Tsvet separates plant pigments on CaCO₃ with ether/EtOH and coins "chromatography" (color writing)

1949 Martin & Anthony James invent gas chromatography

1970-2000 Improvements to capacity,

detector sensitivity, and instrument automation

A Principle Focus: Accommodating Smaller Packing

- Minimize Eddy diffusion term
- Minimize band broadening
- Maximize efficiency (theo. plates)

$$P = \frac{\eta L u}{K^o \pi r^2 \mathbf{d^2}}$$

- Best systems today handle ~1500 bar, but 5000 bar is the goal
- pressure demands increase rapidly as particle size decreases → tests limits of pumps and instrumentation
 - Current approaches to overcoming pressure issue
- \bullet Develop stationary phases that can withstand temperatures >200 $^{\rm O}$ C (limit is currently around 80 $^{\rm O}$ C)
 - Invent narrower columns that can still be reliably packed with stationary phase
 - Develop new stationary phase morphologies, such as core-shell particles

- Core prevents analyte from getting "stuck" in packing
 - Remarkably reduce Eddy diffusion
- 3 µm core-shell particles outcompete 2 µm fully porous particles
- Core can be made of thermally conductive Au to counteract friction

A Few Main Takeaways

• Resolution encapsulates the quality of a separation

$$R_s = \frac{k}{k+1} \times \frac{\alpha - 1}{\alpha} \times \frac{\sqrt{N}}{4}$$

- Selectivity term has biggest effect on resolution
 - Modify eluent or stationary phase first

 Longitudinal diffusion is always occurring, so don't let analytes just sit on column

- Picking too high a flow rate risks interfering with phase equilibration
 - Trial and error is always part of the game