53. Singly Reduced Iridium Chromophores: Synthesis, Characterization, and Photochemistry

Yunjung Baek, Adam Reinhold, Lei Tian, Philip D. Jeffrey, Gregory D. Scholes, and Robert R. Knowles

J. Am. Chem. Soc. 2023145 DOI: 10.1021/jacs.2c13249


ABSTRACT: One-electron reduced photosensitizers have been invoked as crucial intermediates in photoredox catalysis, including multiphoton excitation and electrophotocatalytic processes. However, such reduced chromophores have been less investigated, limiting mechanistic studies of their associated electron transfer processes. Here, we report a total of 11 different examples of isolable singly reduced iridium chromophores. Chemical reduction of a cyclometalated iridium complex with potassium graphite affords a 19-electron species. Structural and spectroscopic characterizations reveal a ligand-centered reduction product. The reduced chromophore absorbs a wide range of light from ultraviolet to near-infrared and exhibits photoinduced bimolecular electron transfer reactivity. These studies shed light on elusive reduced iridium chromophores in both ground and excited states, providing opportunities to investigate a commonly invoked intermediate in photoredox catalysis.